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lo Introduction 

;; For various purposes it is often desired to change the direction or alter 

the 'characteristics of a given beam of ions. This can be done with various 

combinations of magnetic and electric fields, of which a homogeneous magnetic 

field and a radial electric field, such as is found inside an electrostatic 

deflector, are among the easiest to produce. It is the purpose of this report 

to summarize the optical properties of these two types of fields, and of various 

combinations thereof. It is always assumed that the electric and magnetic fields 

are perpendicular wherever they are superimposed, are plane bounded, and that the 

beam is in what shall be called the horizontal plane, which is defined as the 

plane perpendicular to the magnetic field and/or parallel to the electric field. 

The discussion will be confined to effects of the first order in the deviations 

in position, direction, velocity, and mass of the ions from reference values. 

The theory of focussing effects in the horizontal plane is based on a paper 

by R. Hertzog,1 who was interested chiefly in applications to mass spectroscopy. 

Parts of his discussion have been generalized somewhat; further the focussing 

effects in the vertical plane (the plane parallel to the magnetic field and/or 

perpendicular to the electric field) are given. All optical properties are 

expressed'by equations which show the analogy with thick lenses, and so far as 

possible Hertzog<s notation has been used. Lastly some discussion of the appli- 

cation of the theory to the problem of injection into the bevatron has been 

included. 
rR„ Hertzog, Zeits f. Phys. 82, KU1  (1934) 
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2. The Orbital Equations for Fields Bounded by Planes Normal to the Incoming 

and Outgoing Rays 

Consider an electromagnetic field confined to a wedge shaped region, shown 

in Fig. 1 as region III. 

Regions I and II are field free. In region III, bounded by the lines Py! 

and Py", is a uniform magnetic field H perpendicular to the plane of the paper, 

directed upwards or downwards according as the ion is positive or negative re- 

spectively, and an electric field produced by two cylindrical condenser plates 

concentric with P of radius Ri and R2 (™here Rl > %>) wlth a potential differ- 

ence X. If the potentials of the cylinders are so adjusted that the circle of 

radius a has zero potential, the potential and field at a radius r are given by 

V(r) = -JL-in^* ±—   (r " a) 

J?n Ri      aXn R2 
(1) 

Xn R2 

H and X are of such magnitude and sense that an ion with charge e, velocity 

v0, and rest mass M0 incident normally to Py
9 at 0' will follow a circular path 

of radius a about P, emerging at 0", in a direction normal to Py", that is along 

x»« 

For this particle, the radius of curvature a is given by 

or 

where 
&e 

Mo 
2 

a 

eX 
e — v 

c 
D 

a Jl. ■ v§/c2 in Jl 
K2 

1 = 
a 

1 
ae 

M0 v§ 
a In *1 

5         am = 
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,2      eX ,/l- v2yc2 eH 
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are the radii of curvature that would exist if the electric and magnetic fields 

were present alone, respectively.* If the curvatures are opposed the smallest 

of ae or am is taken positive, the largest negative. 

Consider now an ion with velocity and rest mass 

v = v0 (1 + A) 

M = M0 (1 + Y) 

whose path, in regions I and II, with respect to axes x'y', and x"y" is 

U) 

y1 - j1 + a'x
1 

y" = y2 + a"x". 

(5) 

(6) 

It is shown in Appendix I that the path of this ion in region III, to the 

first- order in' A, y, ex1, |j—, a ana z = _ r - a , a 
■-} is given by 

r - a = Al sin K<p + 5(1 - cos K<p) + 21 cos Kf\ 
K - a      J 

(7) 

where K and S are defined by 

K2 . 1 +   fr_)  (1 „ ß2o) 

K2<* = Y + * ( 1 + f- + —^Tö 1 3 Y + BA 
\   &e  1 - ß§ / 

and (50 = IS. 
c, 

Hence 

y9 = r($) a = a &1 sin KJ> + S (1 - cos K$) + -^ cos K$ 
K a 

(8) 

(9) 

(10) 

an = i f dr\    =  _ a,   cos K* + &YL sin Kjp  _ |1 K  sin K| 
a   \, d<pj#) a (ID 

* If V(a) 4  ° tte analysis is unchanged provided that in equations (2) and (3) 

v0 is replaced by v0 = vc 

particle at potential V(a) 

1 _ (1 _ ß2)3/2 e V(a)  the veiocity 0f the same 
M0 v§ 

1 
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so that from (6) 

y" = y„ + a"x» = a [- ^sin K$ + £ (1 - cos K|) + p- eos K| 

+ x » f-a1 cos K$ + <S K sin Kji - ^- K sin K$ (12) 

3o Generalization to Arbitrary Plane Boundaries 

Suppose now that the boundaries of region III* are not the y» and y" axes, 

but are inclined at angles £' and e" to these axes, respectively, as shown in 

Fig» 2, where x'O'O^" again represents the reference orbit» 

n» and n" are the normals to the planes bounding the field. All quantities 

are to be taken as positive when the arrangement is as shown in Fig. 1 or Fig. 2. 

D. is the angle between the field-bounding planes and is to be taken as positive 

when the intersection of the planes is on the same side of the orbit as P, the 

center of the reference ray's circle O'O".  It is related to $, £», and 8" by 

n= $ - 6« - E". (13) 

Further, if c1 is the distance between 0' and the intersection of the field 

bounding planes, then it may be shown geometrically that 

sin £n =^1 Sinn - sin (11+ £'). (13') 
a 

An ion described by (-4) which passes through the point xJ = I*,     y1 = b» 

with angle a" will have a path in I given by 

y« * b» + (x! - jfc») a». (U) 

It will enter the field at the point Qs, leave it at Q», and will behave as 

if it had entered a field bounded by PQ> and PQ». Hence its orbit is given with 

respect to Cartesian axes x»y» in I and x"y" in II (see Fig. 2) by equations (5}(6) 

and (12), with bars placed over all variables. 

The relations between barred and unbarred variables, to first order, aret 

* The effect of the fringing fields is discussed in Appendix C. 

"•" For brevity the notation in is used for tangent, instead of tan. 

i 
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x = x + a &$ f) = f - ü$'  - Afj» 

7 = 7 W - f1** e (15) 
5 m a - &§ &§" = ^2- fn e». 

From (14-)  it is seen that 

y1 = b«  - a'i'. (16) 

Substituting equations  (15)  and  (16)   in   (12), where all variables in the 

latter are barred,  and discarding terms of higher than first order,  there is 

obtained for the path of the outgoing ion the equation 

yti = b» LXH cos_M U ±n K$ - in  V  - in £" - in  £' in £». &^j 

+ cos K$ fl +fn £«±nJÜtU 

+ ai fx„ [ V  <&LM (K tn K| -in e  - in e" - in £» in t" ^^) 

- cos KG  (l .+ tn e» ^^j] 

- cos K|   [i.»  (l + in  £« %^) + ai^]} 

+ £ jx" [K sin K$ +   (1 - cos K$) tn  £»] + a  (1 - cos Kf) Y. (17) 

This is an important equation,   since from it all the optical properties of 

the system may be deduced. 

4.    Optical Properties of the System 

The point  (i% b!)  is called the object point,  and J.1  the object distance. 

All ions from (i*,  b>) with the same b will converge at a point  (1",  b"),  called 

the image point.    The image distance t" is that x" for which the dependence of 

y" on a'  vanishes.    From  (17)   it is seen that JLV  is given by 

-   if   (i + jn £. Jn-K&J+ a£L M 
l„ _  . ■   * ; xv /     K .  ClS^ 

i« (K In Kf - tn e' - in  £" - in e» tn e" ^_Ki) - a (l + tn £»^\^)' 

The analogy with a cylindrical lens is facilitated by the introduction of 
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the following variables 

f 5 a   [cos K$ (K in K$ - in g»  - in £"  - in   E» tn £" ^f1)] " (19) 

g« = f cos K$  (l + tn  6« iaJSt) 

g»< = f cos K$ (l + tn e' ^&] 

f,  g8  and g" are also related by 

f2 «. gjgti , af. (19,«) 

In addition is it convenient to introduce 

p" = h &  sin K(D + (1 - cos Kt>) tn £»] 

q = -§- (1 - cos Kf). (20) 
K2 

Then using equations (19) and (20), (17) can be rewritten 

y» = b« ■6" -   X" + Y~     t(X" " g")(1,  " g!)  " f^ +<SK2 tX"P" + ^ (21) 

Hence the angular deviation is 

a- g jyü., -li + a. i' - g' + $KV (22) 
dx»    f        f 

and the object and image points are related by 

U" - g")(i8 ™ g8) = f2- (23) 

When Is = g!,i" 20° and when 1" = g«, I1 = °° so g8 and g" are the abscis- 

sas of the first and second focal planes G« and G", respectively. 

The principal planes H" and H" are defined by the property that, for S = 0, 

they form images in each other without magnification. If their abscissas are 

called h" and h«3 then 1« * h', h *>  h", b« - b", so from (21), and (23) 

b' = b« = b« £L^p±l 3       (h" - g»)(h!— g') - f2 

so that 

g« - h?i » g3 - h' = f- (24-) 

Since f is the distance* beoween each focal plane and the corresponding principal 

i 
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plane it can be identified as the focal length of the lens. 

With the help of (24-) and (25) it can be shown that 

1 
V  -  h' A» - h"  f ' 

The ordinate of the image, b", is given by (21) as 

(25) 

bn = b< E" - i" + ,a2U"p" + q). (26) 

Since the rays are reversable all of the foregoing equations are valid if 

primed and double primed variables are interchanged. In particular 

b' = b" g' ~ i' + <SK2U'p! + q). (26)' 

Hence all particles will be focussed ati", 0 for which the relation between b' 

and 8  is 
b1 = SK2U'p' + q) (26)? 

which is the condition for velocity-mass focussing. 

In order to have the emerging beam entirely parallel to the reference ray 

it is seen from (22) that 

!' - g»,    |^<$K2p». (27) 

If these conditions are satisfied the ordinate of the emergent parallel ray 

is, from (21) 

y« - - a' f + SK2 [g"p" + q]- (28) 

5. Focussing Properties of the System in the Vertical Plane 

A description will now be sought for the behavior of an ion which approaches 

the field at a slight angle a| with the horizontal reference plane, and which is 

displaced from that plane a distance small compared with the dimensions of the 

system. Such an ion will be deflected vertically only at the edges of the mag- 

netic field by the magnetic fringing field. Since the deflections are propor- 

tional to av and -jp, where by- is the vertical distance above the horizontal 
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plane of the vertical source, the first order horizontal deviations and mass and 

velocity deviations may be neglected in a first order theory. The situation is 

shown schematically in Fig. 3« 

Fig. 3 is a vertical cross section of the system along the curve x'0s0nx" 

of Fig. 2. It is shown in Appendix II that an ion which passes through the 

point x8 = J?v* z'= by at an angle av, i.e., an ion whose vertical path in region 

I is 
z = by + (*' - K)  av (Uv) 

will be so deflected by the fringing fields that its path in region II is 

'■n - ^ ^-kr+ TV f(x"' g^} (n "g4)" ^ 1 (21v) 

where 

„    _ a Ky 
v.~ in  £«  + Ai e"  --£- Jb £» tn e« 

Ky 

gv = fvfl »f-fn£») . 
V        Kv /. (19vJ 

Kv = an-. v      a 

A useful relation is 
f2~g;g:; = ai v (19V) 

Since (21v) is identical in form to (21) except for the absence velocity- 

mass dependence, equations (22) to (28) are valid in the vertical plane if sub- 

scripts v are placed on all variables and <5y is set identically equal to zero. 

Thus -KX O.i       „» £>£  .     i ^v - gv • /ori,r\ 
av - - -5- + av —IT-

5
- (22vj xv       Iv 

(i; - g») av - gy) - f? (23v) 

JL_.. +..____!_„_ =0_ (25v) 
- llv   i« - h»   fy 

where by and hv are the abscissas of the first and second vertical principal 

3 
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planes, respectively, defined by 

g%  - h« = g^ - h^ = fv. (24v) 

Again 1$  is the abscissa of the vertical image whose height is related to that 

of the object by 
b"  P" - p»    f (26v) 

N *v    Sy ~ -*-v 

If the beam is to emerge parallel to the horizontal plane it is necessary that 

K = gv>   •■■ ■ K = ° <27v) 

in which case the height of an ion which starts with angle av will be 

z" = - av fv* (28v'^ 

6. Compound Systems 

Suppose there are two systems in series as shown schematically in Fig. U. 

The beam is assumed to approach from the left. 

x1 and y'"1 

:"   y" 
The 

rx' and f' ^ 

x" X2 n, 
axes are the ' axes for the entire system. 

Note that in Fig. A, t%  is negative. To obtain the path of the emergent ion 

which passes through P,  b' at angle a' equations (21) and (22) are used to 

calculate the ordinate and angle of the ion when it crosses the first focal 

plane of system 2. We have 

so using (21) and (22) 

x2 = 4> x« =-d;, g^ 

b. . yj - b. 
gl - <* - &  + |1 [(d - g£ - gi)U' - gi) - fj] 

■    .  + $>■$&   [(d - g£) pj + qj 

from (21) the equation of the outgoing beam is 

r-bi«Llfl.a»f2 + yt2[x-p; + q2]. 

(29) 

(30) 

(31) 
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Substituting (29) and (30)  in (31) gives 

yll   «   b»' (gj + g£ - d)   (gg - i")      f. ±2_ 
*1 

f2 fx        2 ^[[(d-gi-gya- -g{)-ff] 

*L K| I [(d - g£)  Pi +  qj  *^^ + P£ f2|
+  *2*1 |x» P2 +  ^2 } 

(32) 

This may be put in the form of (21), which can be rewritten,  using (9) 

yw.b' G" " x" +fi f(x« - G»')(ü>  - G')  - F2] +   (Y + BA) 

by means of the following substitutions: 

x" Pn  +  Q 

F = ^%- 
§;■+ gg"d 

■'      -&F 

and 

pn   = 

G"  -  g 

a - gl „.. 

1      f2 

n       f2 

*2 

2.      fN 

i + p2 " f7 qi 

-1 

...    1 

Q.    [(d-gi)|2.+   f2]p£+|iq1   +   q2 

(21c) 

(19c) 

(20c) 

while B is to be construed as an operator which changes P]\, pi?, q]_, q2 into 

Bl Pi' B2 P2* Bl ql * B2 ^2 respectively. The B's are defined by (9). 

With these definitions, (21c) describes the path of the outgoing ion and 

equations (22) through (28) are valid for the system as a whole where, of course, 

K2^ = Y + BAo 

In case the systems are oriented with curvatures opposed, that is, so that 
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the y£ and y£ axes are opposite in sense from each other, the signs of b^ and Ci2 in 

(29) and (30) arereversed. The;effect is to change every sign ; :Ui (32) except the 

last: &2 Ki lx" P2 + 12J* This is ecluivalen't to replacing f2 by -f2 in equa- 

tions (19c) and (20c). 

Similarly equations (19c), (20c), and (21c) describe the vertical focussing, 

except that there is no first order dependence on Y or A, so in equation (2lc) the 

term (Y + B/0 [xn Pn + Q] should be omitted. Naturally the vertical f's and g's 

defined in (19v) must be used in (19c). 

The foregoing may be generalized to the case in which the two systems are 

rotated relative to each other. Thus suppose the y£ axis in Fig. A is rotated 

about the xA axis out of the plane of the paper through an angle 9. Then 

3*2 = ^1 cos e + zl sin e 

Z2 = - yf sin 9 + z£ cos 9 

if the notation is changed to 

yi = yi   *i - y2 

y2 - yi zA - y2 

On =  cos 9 C12 =  sin ® 

C2I = - sin 9 G22 = cos © 

Then yra = ZCmj Yy 

The value of ym when the beam crosses the first focal plane of"2"for the 

m direction, that is where X2 = g^m,  x'j_ = & -  g2m, is 

b2m =Z cmj yj(d    " g2m) 
J*        r 
T*r      L.   gli   "   (d ~ g2m)  ,   a.j      r^       „\ ffn   N       f2 1 

■= f  j P'     fij—  fij" r" 2m" lj " ^ 
+ <§lj   (Y + B1A)   [(d - g2in)   p£ + qj 

Its inclination in the m direction is 

(29') 
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a2ffl 
^2 dx£ 

^L + al iLlAl + «Svj   (Y + Ei A)  pi 
flj *lj 

(30«) 

In (29')  and (30°) the first ixdex on the f »s aridg«s refers to system »l«orl2/'the second 

to the horizontal or vertical component.    The outgoing ray has its mth ordinate 

given by 
r"     -     -h' a2ffl A «' f +     <£ (Y    +    B A] 

ym =  D2ra -^  " u2m x2m T ~lm  v'   '  "2 
x" p»  + qj 

substituting  (29')  and (30")  in  (31!)  gives 

7m '   Z  °mj 1 
>1 

b, 
Gmj  - x "      a1     r _ + _J_    (X" Gmj) Gmj)  ~ FmjJ 

where 

+   (Y +  E  r\)   [x'< F; .+ Qm] 

fi,j  f2m 
mj 

glj  + g2m 

P ' rr ' 1.1    ff 
bmj  = glj   " f2m    ffiJ 

(31') 

(2lc>) 

(19c') 

uny  g2m  .fl 
rmj- 

Here Fm-j refers to the outgoing mth component due to incoming jth component. Also 

(20c") 

Qm = Gml (d - g£m) ff + I2m ■?ju •'•2m 

and B has the same meaning as before. 

7o Applications to Bevatron Injector Systems 

a. "The Berkeley l/A  scale model bevatron. 

The injector system for this machine (see Fig. 5) consists of a cyclotron 

which accelerates the protons to 0.625 Mev, ejecting them in a beam which appears 
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to have separate horizontal and vertical nodes, about 2 ft. from the cyclotron 

tank wall, the horizontal node being about 5 in. closer to the cyclotron than 

the vertical node. The beam then passes through a magnetic wedge with a 10 in. 

radius of curvature, by which it is directed to a 90° electrostatic deflector 

which brings the beam into the bevatron. 

How should this compound system of magnet and deflector be designed to 

obtain a parallel beam for injection, with optimum definition? In the notation 

of Sec. 6, system 1 is the magnetic wedge; 2 the electrostatic deflector. They 

are distinguished by subscripts M and E respectively. As before, subscript v 

refers to the vertical plane, h to the horizontal. Since the velocity of the 

protons is non-relativistic, and since there is no mass variation the following 

relations hold. 

KMh - %T . 1 -  KEv - oo      KEh - 42 fEh - ^ s.^ fa 

BM - 1    BE = 2 g^h - gEh = gE - 3L cot 72 fE 

P O 1    r- (32) 

KMh5 = A   KEhS=2* PE = ^sin^2% 

*h -K =5" fe = rr/2 ££ = £| = 0 q£ = ^ (1 - cos J2 fe). 

If the value <DE = tt/2,  then 

fE = .890 aE pE =  .563 

gE = -.539 aE qE =  . 197 aE. 

It is assumed that aE and ajfl are fixed,  so that i^ (or lv)   £'   £",   J^,  and d 

remain to be determined. 

Now b^ = by = 0 and there is no velocity dependence in the vertical plane, 

so the conditions for a parallel beam   as   given by  (27)  are 

Ü - Gi (33a) 

<§ K2P" = A BP« = 0 (33b) 
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Equations (33)  determine three of the parameters in terms of the other two; 

for convenience they will be used to express <£ S £", and d in terms of üh and f^. 

From (19c), (33a) becomes 

fS 

g| + (gE " d) 

where the subscript h on the f's and g's is understood, or 

(ii-gÄ)((d-gE) -g&) -fä 

a comparison with  (23)  shows that d - g£ is the image of i£ by the magnetic" 

wedge alone.    Hence  (18) applies with i£ = d -■ g£f  K = 1, -fl> » %: 

Xi  (An % - in £')  - aM ^n  £"   .   1 

or 

d - gE- aM <*M Ah 

J^   (in |M -in O)   - aM 

a„ in!   (1 + in  e' in $M)  + a»in & 

In  £" = -JT 
■IJ(i + in £' fn $M)  + aM 1 n $M      d - gE 

From  (20c)  equation  (33b)   can be written as follows: 

BP" -  - ^r^ BM pi*+ B; 
H 

E PE 
fE 

at= o 

d - g£ 
2p|fE 

PiVl 

aE  " aM  ^ "  cos ®M) 

sin §M <~   (1 - cos |M) in £» 

substituting this in  (34a)  gives 

1 - cos IM 
in £"    1 + 

ih   (in IM -^n £') 

flü. -  (1 - cos a»«       x PMV   ^ (1 + in £8 tn ^ivl) + aM tn $i 

sxn 
aE 

(1 - cos (DM) 

(34a) 

(34b) 

(34b) 

in £" = ^M 
aE 

(i - cos IM) 
1^   (in |M - in e')   - aM aM 

üjj   (1 + #n  t« in $)   + aM in |M    aE 

sin |M- ' (34ab) 

Since all of the vertical focussing takes jlace in the magnetic wedge, g^ = ggv 

so from (I9v) 
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I1  - 
aM  (1 - $M *n £«) 

or 

V " ±n g" + ±h £'   (1-1 £n e«) 

in S» = 
J^v  (1 - li*n £•)  + aM (|M 

Setting 
AE 

ag 
n      aM 

-U 
aM 

(34c) 

(35) 

and equating  (34c)  and (34ab)  it follows that 

1 - L^ in e' 
14  (1 - $M tn 6«)  + $fi 

1 „ i_ (1 - cos <j)M) 
AE 

Ln  (in $M - #n  e')   - 1 
Ln  (1+lne' in $M)  + tn 

sin 

*E 

L-     (36) 

Let |X and v be defined by the equations 

A. = 1 _ JL (1 . cos $M) 
M- AE 

^ ^ sin % 
v =      AE 

(37) 

(In case the yjj[ and y| axes are antiparallel, Ag should be replaced by -AJJ in 

(34b) and (37)). With these definitions (36) may be written 

in2 gi fn *„ , hi . $M ^ $M 
LAn m   p.        v   J 

+ in e1 17 1 + 1 + iW +/i _ 1 _ iUn $M 

+ [Ui4-vO$Mt("w^"v^)ln* 
+  f                                             \   (fkn   " ha $M -| —7 r + — 

'U;   vim)**- 

(36') 

= 0. 

From this equation e1 can be expressed in terms of 1£, Jy and $JJ. Then, substi- 

1 A t tuting back in (34-c) and (34b'), e"  and d may be similarily expressed. &n, -^ 
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and $M remain to be disposed of and will be chosen to give as narrow a beam as 

possible. 

The horizontal and vertical widths of the beam may be determined as follows. 

From (28) the horizontal width due to angular divergence is* 

ah 
a» F 

From  (19c) and  (33a),   F.- $MG£ - g^)  = |^- (i£ - g^h),   so 
% LM 

*«h  =   (A a'  ^ *     [(1"   ' g«} ((d * gE)  * g|S)+ V  ^ " gM « W *M 

Gr^U; K - ü *!• «SI - ir^hi h'. **'* 
Thus 

aH > —^— [aM + I'  cos $M(1 + in £» in 
«h      ~" d - gE 

while that due to velocity deviation is 

äÄ   = S K2 [G» P" + Q] = "A B [G" FW + Q] = A BQ 

since BP« = 0 by (33b) 

(38a) 

A* « a. (d - g£) |E-+ fE] Fl 
+ ?■%! + 2q£ 

% LE 

with the help of (34b) this can be written 

AA - A   {fE PS + 2q£ + 2g£ pg] 

^=^ (fE [sin % + (1 - cos <f)M) in £«] + aEJ. 

Finally the vertical height is given by (28v) 

(38b) 

^av '~ '" °^J   v 

but since i.v = gv = gjj, 

a; 5Mv 

«v 

ay a- 

1 - |M #n £" 

iv (38c) 
'v 1 - lMi-n e" 

Formulas (38) give the widths of the beam, i^ and $M (and hence ly,   £', e", and 

d) should be chosen to make them as small as possible» 

* If subscripts v or h are omitted from appropriate variables, h is understood. 
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For a numerical example let 

aM = 10",   aE = 25",   $E = 90°- 

Then the optimum values are approximately i^ = 35", <$M 
= 19°. 

Application of the above recipe then yields 

U *  30",  £' = 40.°0,   £" = -35.°7,   d = 72.5" and 

A  = 238 a' inches ah       h degree 

AÄ = .307 A inches 
percent 

.     ,,,  i inches 
^0Ur = »411 <*V J • "v       v degree 

b. The full scale Berkeley bevatron. 

For this machine it is proposed to use a linear accelerator rather than a 

cyclotron in the injection system, since the former gives a beam of much smaller 

width and angular divergence than the latter. The problem then is to bring the 

beam from the linear accelerator into the bevatron without spoiling this good 

definition. Suppose a single electrostatic deflector is used. Then from (21) 

and (22) 

7n - b£ ^V-^-'T- [(x" - gE)(J!h - gE) - fä + 2* [x« PE ♦ qE] IE    -""E 

LE      .XE 

How. if /2 $E < n/2, then g£> 0 and i^ may be taken equal to gg, in which case 

these equations reduce to 

cnp — x" 

y" - K ^z " <*h fE + 2* &n PE + IE) fE 

a» = - — + 2PE A, (39) 
fE 

while in the vertical direction, 
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y$ - b^ - < (gE + aE lE) (39v) 

since there is no vertical deflection by the electric field. 

It is estimated that the linear accelerator will give a beam about 1/4- in. 

in diameter, with an angular divergence of about 1:500, and an energy spread' of 

about 1:300, this means 

Ab' ~ lA",   A<X' ~ —>        AA -.-!-. 
^ '       500'      500 

The figures tentatively adopted for the deflector are 

% = 37?5    aE = 20'. 

Thus at the end of the deflector the injected beam would be given by (39) and 

.(39*) as 

y£ -  .6017 b£ - 212.4 a£ + 93.92 A        y£ - b£ - 284.9 < 

a£ = - ^j* 1.130 A a$ - -o^. 

The above estimates for the b9s and <x's give 

Ayh' ~ .1504 + .4248 + .1878 -.8»   Ayv' -.25 + ,57 ~ .8» 

Aa£ ~ .0012 + .0023 " .0035 rad     La£  = A ' ~- ,002. 

This should be sufficiently good definition for the purpose. 
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Appendix A 

Path of the Ions Inside the Field Region, Horizontal 

The equation of motion in region III is 

i- (mv) = eE + e 1*-1 
dt c 

where in is the relativistic mass of the ion. Using polar coordinates r, <J)  of 

Fig. 1 and the fields described in Sec. 2 there result from this vector equation 

the two sealer equations of motion 

A_ (m r2^) = eH r f (Al) 
dt     ^   C 

A_(mf)-mrp2--± -SJL - eH r (P. (A2) 
Rl 

&2 

dt rinRl  c 

Integrating (Al) gives 

^   mr2 ^  2mc I   r2 

where subscript 1 denotes the value of the quantity at <p = 0. Putting 
4» 

r = a (1 + (o) 

gives, to first order in p and P-± 

ml eH ? = —<?! (l+ 2^-2*) + — {p-n) 

Substituting (A4) in (A2) gives 

JL (B/*)  . ÜLfl  [mi 9x (1 + Vl - 3/o) ♦ 5f& (? - ?l)] 

e X 

a2in|i 
R2 

<W)   -f~  [»1*1 (l+2a-p)  .fip-f^. 

(A3) 

(U) 

(A5) 



Now from (4-) the velocity and rest mass in region I 

P - £ - Po  (1 + *) 

M = M0 (1 + Y). 

Let E be the total self energy (kinetic and rest) of the particle, 

its linear momentum. By conservation of energy Ejn(r) = Ej - eV (r), 

m(r; = — = mj - —£—<■. 
c2     A   c^ 
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(4) 

and p 

or 

Now 

mI = 
40  (1 

+ Y) 
A -^2   (1 + A)2      /TTß2 

while from (1)  and (3) 

1 + Y + —[--~ 
1.(52 

eV(r)       a    Mo 
c2      " *ejl -(3§ 

so to first order in Yj ^3  and,o 

■w ■ Ä1 1 + Y + Pf 
1 -ß2 fö 

a 
ae    o ^ 

How   (3 =   11 =-^- whence p = m|3c =* c /m2 = M2 

v        m2 

so that from  (4-)  and  (A6) 

tn\     loßocf 1\ a     A 

Combining (A6) and (A7) gives v = p/m: 

Further ri<?j_ -  vi cos <*' ~ vl 

1 + A - -?-. (1 - pg) ^ 
■ ■   a„ . 

(A6) 

(A7) 

(A8) 

* It is sometimes more useful to use the energy rather than the velocity, 

may be shown from (4-) and (A6) that the kinetic energy in region I 

It 

T » T, 1 + Y + 
1 + {l~-$j 

1 -|*§ 
?\ 



„ mi vi      pi Mo do c 
ml ?l = -z—" = T(1 ~ Pll = " a JT^JZ o   L 1-üg     yHa      ae 
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(A9) 

1 - /32 

The equation of motion  (A5)  is now multiplied by m ^—fi and  (A6) and (A9) 

are substituted into it.    By noting that 

f  a 
• _ v ,- 

a 

^ v2 da = o f — ■*-! = 0 
a2 $ 

y2 

a* 
a 

a2 dp 

<f>2 * £ «2 

so that (p)2 is second order, compared to P;  keeping only first order terms, and 

making use of (3) to replace the field expressions by am and ae, and of (21) to 

simplify many terms, the following equation of motion is obtained: 

r = o2 a* (tf-(ie)^^) 1 + -a- 

By use of the substitutions (8) and (9) 

\2 K2
 -1 * [kj(1'ßi) 

K2S = Y + B*» Y +h     1 + *S 
*e  1 -ft 

the equation of motion becomes 

f.%i*li-p). 

Integrating (A10) with the boundary conditions 

(8) 

(9) 

(A10) 

fo- n dp 
dt = - a' at t = 0 

gives 

fit) = - £i sin ^ Kt + i (1 - cos ^ Kt)  + Zi cos Ifi Kt. 
K    c a      -    - a 

To zero order t = <p —- .    Since all terms on the right are already first 

order, this value of t can be used in the above equation, giving 
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r - a = ap -  a ao |^ sin K<p + S (1 - cos K<p) + ^ cos Kffi ]• (7) 

Appendix B 

Vertical Focussing (See Fig. 5) 

The vertical motion is shown in Fig. 3,  and in more detail in Fig. 5.  In 

the latter figure light solid lines are in the yz plane, the plane of the paper. 

Dashed lines are in the xy plane. As before reference ray approaches the field 

in the -x' direction, n' is the normal to the plane bounding the fields, ..:' 

£> =z(x% n'). 

The force on the ion is 

F=elE+-±-vxHj = mr 

so 

* " ic <vx Hy - vy Hx) = -fg vx Hy,   since Hx - 0 

but 

vx = - Vy #n  £' 

* - -Ic ln £' / % (^z) Ht dt - -15 
ry 

fn a" /  Hy (y,z) dy + z0 
J-i¥ cos £« 

It is desired to know z just inside the magnet, past the fringing field. Since 

-» 
H is irrotational 

py no p-M   COS £° 
H • dr - / Hy (y,z) dy + / Hz dz + / Hy (y,0) dy = 0. 

J~U  cos es    Jzi uj 
actual path    inside 

By symmetry Hy = 0 on the z = 0 plane, so the integral in the expression 

for z, at y « 0 is 
/i o 

Hz dz - H zj 
z-, 

where z±  is the height at which the ion enters the wedge. Hence, 
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z - z0 = £*>«'T 

Dividing by v, and using the second of equations (3) gives, to first order* 

AY« ---^ine- = --^%^ (Bl) 

where 

JS-v - a • (B2) 

If the ion passes through the point x' = Hv,  z' = by then z = b| + lv Y
1 

bv + 4* Yv in £« 
AY' - K, 

The ion now goes a distance a| (1 + small correction) in the field, emerging with 

z2 = Z]_ + (Y
1
 + AY1) a$ + second order terms 

= by +  lv V  + t  fo , ** ,,\in e' a$ 

here it undergoes another deflection AY" = - |^ *j? £" so that the outgoing angle 

is 

*i 
n _ £?_ 

dx» 
= Y1 + AY1 •+ AY" 

<- a KT; 

- Y' 

£n £' + £n e« - ^-£n e' ±n £" (B3) 

JU' -X- I in e' + in £« - -|- in e« in e« ) - [ 1 - J- ftn t" 

Hence the vertical path of the ion in region II is given by 

*This derivation has been given by L. S. Lavatelli, AEC Oak Ridge report MDDC-350 
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z» - z2 
+ x" av s *v\ - ^Y" (±n  e°  + ln £n -f-^f' *n en] +  fi . |_tn ei 

^ *v 

+ a' x» -^-fin £• + in e" - ^ in f« £n g« ) - (l - &-in £« ] 

which goes into the standard form 

z" = K g£ - x" | q^ 
(x» - g£)(i| - g|) - f2 

(B4) 

(21V) 

with the definitions 

f,r - 

where 

a Ki 

in e1 + in e" ■- |- in e' in e" 

gv = fv/'l-|-±n£." 

^-fv(l--^^e' 

*m 

(19v) 

fVj) gy and gv are also related by 

fv - gv Sv - a$ fv (I9v) 

Appendix C 

Effect of Fringing Fields (See Fig. 6) 

As the ion approaches the fields along the x1 axis its path is bent some- 

what by the fringing fields, which exert a normal force 

Fn s ^T- %  e Ex sin &s + e Ey cos e' + H^-- 

But dx = rd<p cos <p ~> rdp cos e% where d<p is the change in direction in a distance 

dx 
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d£ = Ex tn g' + Ey +     H2 

or 

A(p s 

Eo ae 

dx 

in £! 

E0 
aE H0 an cos £

! 

Ex dx + Ey dx 
H0 aM cos e

1 Hz dx 

(Cl) 

_ in £' A?E + AUE +  

EQ aE      Ho 

^UM 
cos e' 

where Ug and % are the electric and magnetic stream functions, and VE is the 

electric potential function. Whenever an electric field is present, £' = 0, so 

the first term is always absent„ To calculate the addition to $ due to the 

fringing fields the differences in &f  are taken with and without fringing fields. 

Thus in the ideal case, without fringing field     -— 
V, Ri V 

where the condenser 

plates are at potentials ¥0 and -V0. In the real case, the fringing field is 

given by the field of two sem-infinite conducting planes, at potential V0 and 

-V0„ This is given by Smythe, problem 2A,  Chapter IV: 

Rl - R2 a       • TT(VE + i UE) z = x + xj - — — In sxn 
tr 

With y - 0 it is found that 

AUgf= Ug (x—*oo) = U-g (x—*■- o0 ) ~ 

2V, 

2x 
Rl ~ R2 

+ ^JtnA. 

(C2) 

Thus the change in (Jj due to electric fringing field is 

.  Afo. - 2jn_^ ftl~R2 , o8g3 
R1~R2, 

ti     ag ag 

For the magnetic field, if it is assumed that the magnet extends infinitely 

in the vertical direction, then it may be shown, by a suitable series of Schwarz 

transformations, that 

tr % + i VM \ 
n J-L a JL_ (x + iz) 

Sy     Sy 
fl + 4- exp. 

«(% + i VM)'     ji    , 
  + smb. x — exp.I 

VoM 2   12 V, 
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where Sv is the vertical separation of the magnet pole faces. Thus 

(x—»oo) (x—* - oo  ) 

2x £fl+Jlni^.} 

2x whereas without the fringing field it is —.    Hence 

A$; = 
Jv 

ccs £."  aM n 
Id + 4n4£ 

4 S, 
(G3) 

Actually the magnet is not vertically infinite, • but has height A so that 

for x1» A the contribution to &$$. wil1 be zero. Thus x' should be limited to 

the approximate dimentsions of the system, namely A, 

aM TT V      * Svj 
sec £s + sec £")• 

The exact value is 

A(]jjH = lim       — { sec £' 
Hz   (x,x in   £') 

l-OO H, 
dx - x 

(a) 
+  sec £" 

x Hz  (x,x in £») 

■00 H, 
dx = x 

Hence the fringing fields increase the turning angle $ by 

&| = A|>E + ü<] 
Rl - B?      sv 1 

,883 —  + v i (Sec  V   +  sec g.n) in^.A_\ 
M w V4    Sv/ 

(C5) 
aE affi 

where Sv is the vertical separation of the pole faces and A is of the order of 

the total height of the magnet. Thus, due to the fringing fields, both the 

electric and magnetic fields effectively extend an additional distance of the 

order of the gap width. 

Information Division 
2-27-50 md 
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Errata 

Page 

U        The term "electromagnetic field" refers to the static electric and magnetic 

fields discussed in this paper. 

Following the first sentence after equation (1) add: 

The x' and x" axes of Fig. 1 are normal to y1 and y" at 0' and 0" 

respectively, directed outward, so that the ion just described ap- 

proaches the field along the x1 axis negatively and leaves along the 

x" axis positively. 

15  After equation (32) read: 

If the value %; = rr/2 is substituted in (32) the following numerical 

values are obtained: 

21  The last term on the right of the second of equation (AA)  should read: 

(f-fi) -—^l not f-^r-N 

27  In the first equation in the middle of the page y is measured from the 

inner condenser plate, at potential -V0. 

The following equation is valid for y = 1 —2} that is for VE = 0, rather 

than for y = 0. It should read: 

üUE = V0 _2x_ + l[nA 
Kl " R2  ff 

Figure 

5   The separation between magnet pole faces should be labeled S-y, not SH< 
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Fig. 1 

Fig. 2 
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Fig. 3 

Fig. 4 
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n'<- 

J 4- 

Fig. 5 

2 (OUT OF PAPER) 

Fig. 6 

END OF DOCUMENT 


